If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10k^2+31k+15=0
a = 10; b = 31; c = +15;
Δ = b2-4ac
Δ = 312-4·10·15
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-19}{2*10}=\frac{-50}{20} =-2+1/2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+19}{2*10}=\frac{-12}{20} =-3/5 $
| 10(y-3)+2y=54 | | 6x+30=8x+38 | | 4(x+7)+3=31 | | -2(6+4x)=76 | | (-4+5)+(-13x+39)=180 | | (-4+5+(-13x+39)=180 | | .25x-3.75x=5 | | 1+2(x-1)=9 | | t^2+5t+6/t+3=-1 | | -15+36=-3(x+5) | | (2x+6)+(6x-10)=180 | | 6p=-47 | | 3^3x+1=648 | | 2+43=-5(7x-9) | | 2x+2-5x=-2x-15+8-4x | | 11p/2=-47 | | 2x-11+10x-5=44 | | 10-(x-6)=8(x+9) | | 2(3x+9)=-49+13 | | 102/174=x | | 14y=10y-12 | | 7-x^2=8x | | b^2+9b-6b=-5 | | 3/2x-2.2=2(0.7x-1 | | 445=3x | | Tn=4n+5 | | 5y-4=10y+11 | | 445=3r | | 4(3x+5)-9x=2 | | 4x^2+3x=40 | | 18x+5(4-x)=40 | | (2w-5)(w+2)=-8 |